Synthesis and application of graphene nanoribbon decorated with tio2 towards the simultaneous detection of nevirapine and glucose

Graphene nanoribbons (GNRs), titanium dioxide (TiO2), and their composites Graphene nanoribbons/titanium dioxide (GNRs/TiO2) were employed towards the simultaneous detection of nevirapine (NVP) and glucose (GLC). The nanomaterials were characterized Fourier-transform infrared spectroscopy (FTIR), UV...

Full description

Saved in:
Bibliographic Details
Main Author: Apath, Daniel, A. A.
Language:English
Published: Midlands State University 2019
Subjects:
Online Access:http://hdl.handle.net/11408/3727
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1779905350138331136
author Apath, Daniel, A. A.
author_facet Apath, Daniel, A. A.
author_sort Apath, Daniel, A. A.
collection DSpace
description Graphene nanoribbons (GNRs), titanium dioxide (TiO2), and their composites Graphene nanoribbons/titanium dioxide (GNRs/TiO2) were employed towards the simultaneous detection of nevirapine (NVP) and glucose (GLC). The nanomaterials were characterized Fourier-transform infrared spectroscopy (FTIR), UV-vis and thermogravimetric analysis (TGA), cyclic voltammetry, electrochemical impedance spectroscopy, linear sweep voltammetry, differential pulse voltammetry, and chronoamperometry were utilized in the electrochemical detection of nevirapine and glucose. The optimum pH for the electrocatalytic detection of nevirapine and glucose simultaneously were determined to be pH 11.0 The limits of detection and quantification were deduced to be 1.27 x 10-7 M for glucose and 1.282 x 10-7 M for nevirapine and limit of quantification were also deduced to be 3.882 x 10-7 M for glucose and 3.882 x 10-7 M for nevirapine respectively using differential pulse voltammetry. The rate constant of 1.655 x 101 M1s-1 and 1.42 x 101 M-1s-1 for nevirapine and glucose respectively. surface area of the electrode and the surface coverage were determined to be 2.7 ×101 M-1 s-1, 0.238 cm2 and 1.58 x 10-5 mol cm2 respectively. The adsorption equilibrium constant ß was determined to be 3.3 x 104 M-1 from the Langmuir adsorption kinetic model with a Gibbs free energy of 25.34 KJ mol-1. GNRs/TiO2GCE showed excellent electrooxidation of nevirapine and glucose and oxidation over potential were lowered. The higher surface coverages were observed which indicating that modifiers were lying flat on the electrode surface. The GNRs/TiO2-GCE gave catalytic rate constants The limits of detection observed for nevirapine and glucose were 9.66 × 10-7 and 7.2 × 10-7 M respectively. The adsorption equilibrium constants for nevirapine and glucose were found to be 1.05 x 105 M-1 and 5.56 x 105 M-1 respectively. Furthermore, the high Tafel slopes were observed which indicated that the adsorption of each analyte to the surface of the electrode. The Gibb’s free energy for nevirapine and glucose were also found to be -28.63 kJ mol-1 and -27.07kJ mol-1 respectively. Interference studies were done and the electrode displayed the ability to detect both nevirapine and glucose. The electrode displayed good reproducibility with lower oxidation potential at 0.8 V and high sensitivity towards nevirapine and glucose. The developed sensor exhibited an excellent noninterference property and good reproducibility towards the detection of nevirapine and Glucose.
id ir-11408-3727
institution My University
language English
publishDate 2019
publisher Midlands State University
record_format dspace
spelling ir-11408-37272022-06-27T13:49:05Z Synthesis and application of graphene nanoribbon decorated with tio2 towards the simultaneous detection of nevirapine and glucose Apath, Daniel, A. A. Graphene nanoribbons Graphene nanoribbons (GNRs), titanium dioxide (TiO2), and their composites Graphene nanoribbons/titanium dioxide (GNRs/TiO2) were employed towards the simultaneous detection of nevirapine (NVP) and glucose (GLC). The nanomaterials were characterized Fourier-transform infrared spectroscopy (FTIR), UV-vis and thermogravimetric analysis (TGA), cyclic voltammetry, electrochemical impedance spectroscopy, linear sweep voltammetry, differential pulse voltammetry, and chronoamperometry were utilized in the electrochemical detection of nevirapine and glucose. The optimum pH for the electrocatalytic detection of nevirapine and glucose simultaneously were determined to be pH 11.0 The limits of detection and quantification were deduced to be 1.27 x 10-7 M for glucose and 1.282 x 10-7 M for nevirapine and limit of quantification were also deduced to be 3.882 x 10-7 M for glucose and 3.882 x 10-7 M for nevirapine respectively using differential pulse voltammetry. The rate constant of 1.655 x 101 M1s-1 and 1.42 x 101 M-1s-1 for nevirapine and glucose respectively. surface area of the electrode and the surface coverage were determined to be 2.7 ×101 M-1 s-1, 0.238 cm2 and 1.58 x 10-5 mol cm2 respectively. The adsorption equilibrium constant ß was determined to be 3.3 x 104 M-1 from the Langmuir adsorption kinetic model with a Gibbs free energy of 25.34 KJ mol-1. GNRs/TiO2GCE showed excellent electrooxidation of nevirapine and glucose and oxidation over potential were lowered. The higher surface coverages were observed which indicating that modifiers were lying flat on the electrode surface. The GNRs/TiO2-GCE gave catalytic rate constants The limits of detection observed for nevirapine and glucose were 9.66 × 10-7 and 7.2 × 10-7 M respectively. The adsorption equilibrium constants for nevirapine and glucose were found to be 1.05 x 105 M-1 and 5.56 x 105 M-1 respectively. Furthermore, the high Tafel slopes were observed which indicated that the adsorption of each analyte to the surface of the electrode. The Gibb’s free energy for nevirapine and glucose were also found to be -28.63 kJ mol-1 and -27.07kJ mol-1 respectively. Interference studies were done and the electrode displayed the ability to detect both nevirapine and glucose. The electrode displayed good reproducibility with lower oxidation potential at 0.8 V and high sensitivity towards nevirapine and glucose. The developed sensor exhibited an excellent noninterference property and good reproducibility towards the detection of nevirapine and Glucose. 2019-10-07T09:32:49Z 2019-10-07T09:32:49Z 2019 http://hdl.handle.net/11408/3727 en open Midlands State University
spellingShingle Graphene nanoribbons
Apath, Daniel, A. A.
Synthesis and application of graphene nanoribbon decorated with tio2 towards the simultaneous detection of nevirapine and glucose
title Synthesis and application of graphene nanoribbon decorated with tio2 towards the simultaneous detection of nevirapine and glucose
title_full Synthesis and application of graphene nanoribbon decorated with tio2 towards the simultaneous detection of nevirapine and glucose
title_fullStr Synthesis and application of graphene nanoribbon decorated with tio2 towards the simultaneous detection of nevirapine and glucose
title_full_unstemmed Synthesis and application of graphene nanoribbon decorated with tio2 towards the simultaneous detection of nevirapine and glucose
title_short Synthesis and application of graphene nanoribbon decorated with tio2 towards the simultaneous detection of nevirapine and glucose
title_sort synthesis and application of graphene nanoribbon decorated with tio2 towards the simultaneous detection of nevirapine and glucose
topic Graphene nanoribbons
url http://hdl.handle.net/11408/3727
work_keys_str_mv AT apathdanielaa synthesisandapplicationofgraphenenanoribbondecoratedwithtio2towardsthesimultaneousdetectionofnevirapineandglucose